Question bank 2019

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code:ADVANCED PHYSICS(19HS0850)Year &Course & Branch: I B.Tech – Mechanical Engineering.Regular

Year & Sem: I-B.Tech & I-Sem Regulation: R19

UNIT -I - WAVE OPTICS

1.	(a)	Describe the formation of Newton's ring with necessary theory.	7 M
	(b)	Explain how the wavelength of light sources is determined by forming Newton's	5 M
		ring.	
2.	(a)	How multi colors on thin films?	4 M
	(b)	Derive the condition for bright and dark fringes through the interference in thin	8 M
		films by reflection?	
3.	(a)	State and explain principle of interference?	6 M
	(b)	Mention important conditions to get interference?	6 M
4.	(a)	What is coherence? Explain spatial and temporal coherence.	5 M
	(b)	Write brief note on experimental arrangement of Newton's rings.	7 M
5.	(a)	Explain the interference in thin films by reflection.	8 M
	(b)	What is the thickness of the thinnest film of 1.33 refractive index in which a_{0}	4 M
		destructive interference of the yellow light (6000 $\overset{\circ}{A}$) of a normally incident beam	
		in air can take place by reflection?	
6.	(a)	Distinguish between interference and diffraction?	6 M
	(b)	Distinguish between Fresnel's and Fraunhofer diffraction?	6 M
7.	(a)	Derive the conditions to get principal maximum and minimum intensity	8 M
		positions due to single slit due to Fraunhofer single slit diffraction.	
	(b)	Draw intensity distribution curves and give condition for bright and dark fringes in single slit diffraction pattern.	4 M
8.	(a)	Write brief note on grating spectrum?	6 M
о.	(a) (b)	How you determine the wavelength of light using grating spectrum?	6 M
9.	(b) (a)	What is diffraction grating how diffraction grating constructed?	8 M
).	(b)	A plane grating having 10520 lines per cm is illuminated with light having a	4 M
	(0)	wave length of 5 x 10^{-5} cm at normal incidence how many orders are visible in	- IVI
		the grating spectra?	
10	(a)	Define interference, diffraction and grating equation?	6 M
10	(b)	What is grating spectrum and mention the use of diffraction gating in technical	6 M
	(0)	world ?	0 1/1
		UNIT –II – ACOUSTICS AND ULTRASONICS	
1.	(a)	Define Reverberation and Reverberation time?	7 M
	(b)	What are the basic requirements of acoustically good hall?	5 M
2.	(a)	Define absorption coefficient of sound and derive it?	7 M
	(b)	A class room of volume 360 m^3 has a reverberation time 1.6 seconds. 5 M Calcu	ılate
		the total sound absorption coefficient of the class room?	
3.	(a)		7 M
		reverberation time?	
	(b)		5 M
		If the area of the sound absorbing surface is 350 m^2 , calculate average	

Question bank 2019

	absorption coefficient?	
4. (*	8 M
	(1) Reverberation	0 101
	(2) Absorption coefficient	
	(3) Pitch and Loudness of sound	
		[Coloulate
		1 Calculate
5	the total sound absorption coefficient of the class room?	6 M
5.	 (a) What is the importance of acoustics in engineering (b) Homeone activities the merchant in the mercia hello? 	6 M
6	(b) How we optimize the reverberation time in the music halls?	6 M
6.	(a) Write the properties of Ultrasonic waves.	6 M
_	(b) Explain the detection methods of Ultrasonic waves.	6 M
7.	(a) Explain Piezoelectric effect.	4 M
	(b) Describe the application of Ultrasonic in non-destructive testing (NDT) of	f 8 M
	material	
8.	(a) How ultrasonics are produced by using piezoelectric generator?	8 M
	(b) A quartz crystal has a thickness of 4×10^{-3} and density 3×10^{3} kg/m ³ . 4 M	M Calculate
	its fundamental frequency. Give the Youngs modulus of crystal is	
	$8.2 \times 10^{10} \text{ N/m}^2$.	
9.	(a) Give the important applications of ultrasonic waves?	6 M
	(b) How will you classify sound waves based on their frequencies?	6 M
10.	(a) Write brief note on medical applications of ultrasonic waves?	6 M
	(b) What are the characteristics of sound?	6 M
	UNIT –III – MAGNETIC MATERIALS AND DIELECTRIC MATERIAL	LS
1		43.6
1.	 (a) Define i) magnetic moment and ii) magnetic susceptibility. (b) E = 1 + i + 1 	4M
	(b) Explain the origin of magnetic moments.	8M
2.	(a) Define i) magnetization ii) magnetic flux density iii) magnetization iv) magnetization iv)	agnetic 8 M
	dipole	C
	(b) A circular loop of copper having a diameter of 10 cm carries a current of 5	500 4 M
	Ma.caliculate the magnetic moment associated with the loop.	
3.	(a)Describe the classification of magnetic materials based on spin magnetic	c 8 M
	moments.	
	(b) Discuss the applications of soft magnetic materials.	4 M
4.	(a) Explain B-H curve of ferromagnetic material.	8 M
	(b)What are soft and hard magnetic materials.	4 M
5.	(a) Define magnetic susceptibility and permeability. Obtain the relation b them?	etween 8 M
	(b)Find the relative permeability of ferro magnetic material if a magnetic field of	f 4 M
	strength 220 A/m produces magnetization 3300 A/m in it.	
6	(a) What are dielectric materials? And explain their properties?	7 M
0.	(b) Define i. dipole moment ii. Polarization	5 M
7.	(a) Describes the different types of polarization?	8 M
7.	(b)What are the advantages of dielectric materials	4 M
8	(a) Explain phenomenon of electric polarization in dielectrics. Derive an expl	
0.	for that.	0 WI
	(b)The dielectric constant of He gas at NTP is 1.0000684. calculate the electronic	c 4 M
	polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m ³ .	- 111
9	(a) What is orientation polarization? Derive an expression for the mean	dipole 6 M
	(a)	

Question bank 2019

10.	(b) (a)	moment when a polar material is subjected to an external field Derive Clausius – Mossotti equation? Discuss the frequency dependence of various polarization process in dielectric	6 M 8 M
	(b)	materials Explain the important requirements of insulators.	4 M
		UNIT –IV – LASERS AND FIBER OPTICS	
1.	(a) (b)	Describe the important characteristic of laser beam? Explain the difference between spontaneous and stimulated emission of 6 radiation?	6 M M
2.	(a)	Derive the relation between the various Einstein's coefficients of absorption and emission of radiation.	8 M
	(b)	Explain population inversion?	4 M
3.	(a)	Explain the construction and working principle of He-Ne laser with suitable energy level diagram.	8 M
	(b)Wi	rite few advantages of He-Ne laser.	4 M
4.	(a)	Explain the construction and working of Nd:YAG laser with suitable energy level diagram.	8 M
	(b)W]	hat are the advantages of Nd:YAG laser?	4 M
5.	(a)	Explain the different pumping mechanisms in laser.	6 M
	(b)W	rite brief note on applications of lasers?	6 M
6.		hat is the acceptance angle of an optical fibre and derive an expression for it. 8 M	1
		n optical fibre has a core refractive index of 1.44 and cladding refractive index of 1.40. Find its .	4 M
7.	(a)	What is the numerical aperture of an optical fibre and derive an expression for it.	8 M
	(b)Ar	optical fibre has a numerical aperture of 0.20 and cladding refractive index of 1.59. Determine the refractive index of core and the acceptance angle for the fibre in water has a refractive index of 1.33.	4 M
8.	(a)	Differentiate step index and graded index fibers.	6 M
		rite brief note on attenuation in optical fibers.	6 M
9.	(a)	Explain the black diagram of fiber communication system?	8 M
	(b)W	hat are the applications of fiber optics?	4 M
10.	• •	stinguish between single mode and multimode optical fibers	6 M
	(b)W	rite brief note on the structure of fiber cables	6 M
		UNIT-V-(PHYSICS OF NANOMATERIALS)	
1.	(a) V	What is nanomaterial? Write the classification of nanomaterials	6 M
		rulain the hasis minimized of non-materials	C M

(b) Explain the basic principle of nanomaterials. 6 M 2. (a) What is Quantum Confinement? 5 M (b) Write the applications of nanomaterial? 7 M 3. (a) Explain why surface to volume ratio very large for nano materials? 8 M (b) Find the surface area to volume ratio of Sphere using surface area and volume 4 M calculation for the given radius is 5 meter? 4. (a) Explain ball milling technique for synthesis of nanomaterial? 8 M (b) What are the techniques available for synthesizing nanomaterials? 4 M 5. (a) What is nanotechnology? How it is useful to the society? 6 M

	(b)	Discuss properties of nanomaterials?	6 M
) .	(a)	How we synthesis nanomaterial by Sol-Gel technique?	8 M
	(b)	Write advantages of sol-gel process?	4 M
	(a)	What are the differences between nanotechnology and NanoScience?	6 M
	(b)	Define Condensation, Crystal growth and Nucleation?	6 M
.	(a)	Write brief note on biomedical applications of nanomaterials?	6 M
	(b)	What is the future scope of nanomaterials?	6 M
).	(a)	What is top down approach and explain ball milling technique for synthesis of nanomaterial	8 M
	(b)	Write advantages of ball milling technique.	4 M
0	(a)	What is bottom up approach and explain sol-gel preparation method with neat	8 M
		diagram?	
	(b)	What is the effect of size on quantum dot?	4 M